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Simulating 2D Flows with Viscous Vortex Dynamics
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Approximate solutions of the two-dimensional Navier-Stokes equation can be
constructed as a superposition of viscous Lamb vortices. Requiring minimum
deviation from the Navier—Stokes equation, one gets a set of ordinary differen-
tial equations for the positions, strength and width of the vortices. We calculate
the deviation of the solution from the Navier—Stokes equation in the square
norm. The time dependence of this error is determined and discussed.
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1. INTRODUCTION

We have pleasure in dedicating this paper to Prof. Gregoire Nicolis on the
occasion of his 60th birthday.

Two dimensional flows often appear in the atmosphere due to
stratification. As the typical horizontal extension of the flow is very large,
the Reynolds number Re= UL/v is very large, too,*> thus the flow is
dominated by the inertial term (¢ V) ¢ of the Navier—Stokes equation. The
presence of the viscosity term is nevertheless important, as any decay of the
flow is due to dissipation described by this term. Note that the effect of the
viscosity is especially important at small length scales.

Therefore, there is an interest in methods that work in the regime of
high Reynolds numbers.") Our specific motivation stems from atmospheric
chemistry, where transport at long distances is determined by the large
scale behavior of the flow, while chemical reactions take place locally.
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3U, L and v stand for the characteristic velocity, length scale and the kinematic viscosity,
respectively. In the atmosphere Re=10%... 10,
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Therefore, it is desirable to have a model for the background flow which
is correct at both large and small length scales. In the present paper we
discuss such a method.

Incompressibility in the two dimensional case allows of the introduc-
tion of the scalar stream function y whose derivatives determine the
velocity by

= 1)
0=~ 2)
In terms of the vorticity
0=r-2 3)
the Navier—Stokes equation reads
%)-I-(GV)Q):\/AQ) (4)

In the nonviscous case (i.e., when v=0 and thus Re becomes infinite) there
exist a special class of exact solutions, called point vortex dynamics.
Indeed, the stream function

Y=Y I;In|F—F,(1) (5)

(and the corresponding velocity field) satisfies Euler’s equation exactly if
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yi=— r,—1——- (7)
== 2 R

Note that these equations can be derived from the Hamiltonian

H=3Y Y I lIn|7f—7 (8)

J k#j
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by the usual canonical formalism if the “coordinates” ¢; and “momenta” p;
are defined by

q;=T}x; 9)
Pi=); (10)

Equation (5) describes a superposition of point vortices

Vo= ———215 (11)

(12)

thus Eq. (7) determines the motion of the vortex centres.

In the viscous case the point vortices are replaced by nonsingular
ones®?® in various ways. A further idea consists in representing the
diffusional term as a stochastic process. This has been used for the exact
solution of the two-vortex problem™® and as an approximation for the
many-vortex problem.® The convergence of the latter is limited by the
error bars of stochasticity which decrease like 1 /\/N where N is the num-
ber of vortices. In view of this an alternative scheme has been suggested in
which the Laplacian operator of the diffusive term is replaced by an
integral operator that in turn is discretized.*® This scheme has been
applied in a series of papers.(”>®

The one-point vortex solution has an exact generalization in the
viscous case. This is the Lamb vortex,® given by

Y=o (F—Fo)?
=———"——11- —_— 1
=~ ] 1
X —Xq (F—7y)?
=—F5|1— - 14
s o~ a
1 (F—T,)?
where 02 depends linearly on time, namely,
02 =S+ 4vt (16)

It is easily seen indeed that in the nonviscous case (v=0) and for S — 0 the
Lamb vortex goes over to the point vortex solution. As point vortex
dynamics is exact in the nonviscous case, for large Reynolds numbers one
expects that a superposition of Lamb vortices can be a good approximate
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solution of the Navier-Stokes equation (although an exact solution of this
type does not exist). Therefore, we consider the Ansatz

) (F—7;(1))?
el ) "

for the vorticity and analogously for the velocity field. Such an Ansatz
(with constant I; and S;) has been introduced in ref. 10. Further work
along this line and applications can be found in refs. 11-12.

In contrast to the papers mentioned above the time dependence of the
parameters is determined from the condition that the Ansatz be the “best”
approximation to the Navier—Stokes equation. In order to define precisely
in which sense the solution is best, we consider a variational approach.!?
Suppose in general, that an Ansatz with time-dependent parameters is
given, that is, the spatial dependence of the stream function is

l//=lp(7_’; al(t)r a2([)""’ an(t)) (18)

When inserting this Ansatz into the Navier-Stokes equation, d; appears in
Odw/0t (and only there). Therefore, one can choose these time derivatives so
as to minimize the deviation from the Navier—Stokes equation (for sim-
plicity using the square integral norm), i.e., we require

b [0 :
Jd 7 E#—(vV)w—vAw = minimum (19)
As
ow ow .

minimization of Eq. (19) gives

Zjd%aw do , jd*?—(mm (FV) w) (1)

d, =
k da; day, a;

This is a set of implicit quasilinear ordinary differential equations i.e., it has
the structure

ZMkak_f (22)
k

where the matrix M, and the vector f; depend on the parameters a;.
Certainly, this method is generally applicable to find approximate solutlons
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to the Navier—Stokes equation. An interesting example is (on a finite rectan-
gular domain with periodic boundary conditions) when one uses the Ansatz

=2 ap(1)e™ (23)
{k}
with a carefully chosen finite self-similar set of wave vectors k, called the
reduced wave vector set.(!*15 Note that this method gives account of many
of the statistical properties of the turbulent flow correctly (except for small-
scale intermittency), even at very high (108-10°) Reynolds numbers.

We apply the variational method by using the Ansatz (17). The result-
ing equations will be given and discussed in the next section. These
equations are slight generalizations of those given in ref. 10. We present
them in a form which expresses their structure and symmetry rather clearly.
In Section 3 we calculate the deviation from the Navier—Stokes equation
explicitly. To our best knowledge, this has never been done before. Finally,
we present some numerical results and conclude.

2. THE APPROXIMATE EQUATIONS

Inserting the Ansatz (17) into Eq. (21) we get after lengthy but
elementary calculations

o Ir,
Z 7r23252 (V o Vi Ly ) e+ Z 252(52 (V 4z, Ijk)S
k=170;

n

+ Z 25252 (Vr}ljk) F
< N N
=2 Zoawarey i\ Onlie = Ox ) (24
" I'.T, P o

I antsrgr Vadoh it I qerstga (454010 Se

+Z 2(5252 Ar]jk)fk
él%(v%zﬁ Pt z g 52 (L) S+ Z ﬁlﬂf k
=5 % st Ol 0T (26)

k= ll#k
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As one can see, all the coefficients are derivatives of the quantity

U (V'fk)2>
1 — 2
ST p( o (27)
2t 5
and
’7}—}’1 fk_Fl
[ =T % o ex _7(;7]—7,()2
i <Fj—7,+7k—7,>2 P\ 67462
5]? o2
(Fe—7)? (Fz—r})2+(f,~—fk)2
0252 0262 0262
—exp| — kY1 1 Ilj 1 J K (28)
g‘f‘g*‘g
Here

02 =S, + vt (29)

At the derivation we used a simpler method than that given in ref. 10,
namely, instead of using polar coordinates and Bessel functions, we
calculated integrals of the type

l—e p[ (”—’71)2
—ex
(F—7y)? ‘5%
2>
Jarrenp| 5| — B
by using the identity
{ r—r,) ]
I —exp >
1/8) o,
= }7)2 =f0 daexp[ —a(iF—7,)”] (31)

and changing the order of the integrations.

The Eqgs. (24)—(26) are a set of ordinary differential equations for
the vortex centres, strengths and widths. They correspond to a special
approximate solution of the Navier-Stokes equation—the speciality being
that the initial condition should be a superposition of Lamb vortices. This
excludes the possible presence of an overall shear flow, for instance. The
present formulation does not take into account possible external forces,
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either, e.g., the Coriolis force is also absent (although it is quite important
at large scale in the atmosphere). Even after these simplifications we do not
have an exact solution. Nevertheless, the method is the better the closer we
are to the point vortex dynamics of the nonviscous case. Therefore, if the
initial distances among the vortex centres are much larger than the widths
and the Reynolds number is high, we may expect a high accuracy. In other
words, at least for a class of special initial conditions, we have a method
which is the better the higher the Reynolds number is.

3. DEVIATION FROM THE NAVIER-STOKES EQUATION

In simple situations one may use other methods for comparison in
order to get an information about the quality of the approximation,
however, at high Reynolds numbers brute force methods fail, thus we need
a self-consistent characterization of the accuracy. A rather straightforward
way is to calculate the deviation (19) itself and compare it with the square
norm of the terms of the equation. Certainly, if their ratio becomes of order
unity, the method is unreliable.

Using the general notation (22) for the quantities appearing in
Egs. (24)—(26), the deviation (19) can be written as

jdzf<a(0+(17V) —vAw> szq 0V) @) =) d fi (32)
ot k

We shall compare this quantity with the square integral of the inertial term
(which is dominant at high Reynolds numbers), i.e., we characterize the
error of the method by

2k xSk
—— 33
[ d*F(TV) w)? (33)
If it is small compared to unity, then the accuracy is high and the method
gives reliable results. The only quantity in Eq. (33) we still need to
calculate is the integral which is just the square integral of the inertial term.
The calculation is again done by using the identity (31) and leads to

I r.r
JerEvor=2 ¥ ¥ ¥ 5 Snistgr (L) (34)

i j#i k l#k

Here

L exp( —z) v exp(—z)
I = —FgFy <L1 dz 4(2—2,)2-1-2? Lz dzg(z—zr)z-i-zf (35)
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and

I 23 o d= (8117 + £10)(8227° + €212 + &20) €Xp( —2)
2 g0 [(z—z,)*+27]
2 (112 + h1o)(hppz® + hay 2 + hy) exp( —z)
- j z 2, 272 (36)
ho Ju, [(z—z)"+z7]
Equations (35), (36) contain the following shorthand notations:
Fi=r—T (37)
P
6253
w1 (38)
62 o2
P n & n P
. __5?52 5?5} 5f5i (39)
S T T
d; 97 of
22 22 22
Tt st e
Uy = i k1 zll 1l k (40)
62 57 o2
72 72 72 72 2 72
St st st e T 5
U:ik i1l 1Yk iy 'k 1Yy (41)
: Tt
d; o7 op o]
FiTu  Tigl
z,= (42)
62 oz
= <;5+;k,2:> ATy (43)
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Note that the integrals (35) and (36) can be expressed in terms of the
exponential integrals E,(z) where n runs from 1 to 4 and the argument is
usually complex.

4. CONCLUSION

In the two dimensional case (compared to the three dimensional situa-
tion) an additional approximately conserved quantity emerges (which is
strictly conserved in the zero viscosity limit), the enstrophy, which is just
the spatial integral of the square of the vorticity. This leads to a different
qualitative picture about the energy cascade and the dissipation. While in
three dimensions large eddies decay to smaller eddies, in two dimensional
flows just oppositely, small eddies merge and form larger eddies. In our
numerical simulations this generic merging has indeed always occured. We
have used some superposition of Lamb vortices on the infinite plane as the
initial condition and then solved Egs. (24)—(26). The deviation (33) has
also been calculated. Here we demonstrate the accuracy of the method in
the simple case of two vortices. The vortices are initially at (20, 0) and
(—20, 0), their initial widths are unity. The kinematic viscosity were chosen
v=10.25, and both vortex strengths I"; had the value 25. Figure 1 shows the
error (33) as a function of time. As the vortices merge, the accuracy
decreases.

In conclusion, we discussed a semi-analytical approximation scheme
which yields a class of special solutions to the Navier—Stokes equation. The
method is the better the higher the Reynolds number is. Compared to other
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Fig. 1. Error (cf. (Eq. (33)) as a function of time for our approximation of a two vortex
system. Initial center position of vortices: (—20,0) and (20, 0), initial widths: 1, vortex
strengths I7; =25, kinematic viscosity: v =0.25.
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vortex approximations of the two dimensional Navier—Stokes our equa-
tions are not explicit. Instead we have to solve a set of implicit quasilinear
differential equations. The CPU time for such problems increases in general
with N3 where N is the number of differential equations. By transforming
the matrix in front to a sparse matrix we hope to decrease the needed CPU
time considerably in the future. The distinct advantage of our procedure is
that the equations are not found heuristically. On the contrary they are
derived from a variational Ansatz. We calculated the square integral of the
deviation from the Navier—Stokes equation for the first time, which allowed
us quantifying the accuracy of the method.
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